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ABSTRACT: In this research paper, a direct boundary integral equation method is used to calculate the ideal flow (i.e. 

velocity distribution) around a symmetric Aerofoil using linear variation for which the exact result is available. To establish 

the validity of the method, the outputs given by this computational method are compared with the exact result for ideal flow 

around the body under consideration. 
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INTRODUCTION 
The importance of boundary integral equation method 

(BIEM) for fluid flow problems have been widely recognized 

during the last few decades. It is derived through the 

discretization of an integral equation which is mathematically 

equals to the original partial differential equation. The 

benefits of the BIEM are that only the boundary (or 

boundaries) of the domain of the PDE necessitates the 

discretization to produce a surface or boundary mesh. 

Boundary element method also reduces the dimension of the 

problem by one e.g. an equation in three-dimensional region 

is transformed into one over its surface and the equation 

having infinite domain is reduced to an equation over the 

(finite) boundary. This reduction of dimension leads to 

smaller linear systems, less computer memory requirements, 

and more efficient computation. In 1960, with the invention 

of the computer and the development in the first high level 

programming language, the approximated numerical solution 

of BVPs became possible. This method has been successfully 

applied in a number of fields, e.g., elasticity, potential theory, 

electrostatics, electrodynamics, magneto hydrodynamics and 

bio fluid mechanics etc. as detailed in Brebbia et al. [1, 2]. 

Brebbia [1,2] was inventor of the term „boundary elements‟. 

The BIEM can be classified in to two categories i.e direct and 

indirect methods. The formulation of the equation of the 

direct method is based on green‟s theorem as used by Milne-

Thomson [4] and Shah [5]. In the past, the calculations for 

flow field around bodies using direct and indirect methods 

have been used (see Morino[3], Hess & Smith[6], Luminita 

[7 & 8], Ali [13], Muhammad[11], Mushtaq[9,10 & 12]). In 

recent years, these methods have been used in calculating the 

flow field calculations. Thus there is a necessity to apply the 

DBIEM to calculate the ideal flow field around arbitrary 

body i.e. symmetric aerofoil and compare the results with 

analytic solution. 

 Ideal flow over a Symmetric aerofoil 

The modulus of the analytical velocity distribution around a 

Sy. Aerofoil (see Mushtaq [12].) is given by 
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Where  r = circular cylinder (C.C.) radius 

 a = constant of joukowski transformation  

And  b = a – r = abscissa of the centre of the C.C. 

 
In Cartesian coordinates, equation becomes 

V= U  
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Process of discretization 

Now consider the case where the symmetric aerofoil‟s 

boundary is discretized into linear elements. In this case the 

nodes are at the intersection of the elements where the 

boundary conditions are precised.  

Divide the surface of the C.C. in the direction of clockwise 

into n elements by applying the formula (Muhammad [11], 

Mushtaq [12]). 

    = [(n + 2) – 2m] 
 

 
  m =1, 2, 3,…n  (2) 

   From equation (2) the end points of these n elements of 

C.C. can be found. i.e.  

     = -c + r cos     

      = r sin    
Now using Joukowski transformation, the extreme points of 

symmetric aerofoil are 
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Now if        =    + i   and     =     + i    then (3) 

becomes 
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Comparing real and imaginary parts, we have 

          
  

  
     

      

           
  

  
     

      

}    m = 1,2,3,…n 

Boundary condition 

In this case the boundary condition over the surface of 

symmetric aerofoil as follows 
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      (4) 

For this case, the equation of DBIEM can be written as 
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Since   and 
  

  
 differ linearly over the element, their values 

are defined at each point on the element in the forms of nodal 

values and the shape functions    and    as 

  = [     ]  {
   

    
} 

  

  
 = [     ]  { 

   

  
   

  

}        (6) 

Now integrals along an element „j‟ on L.H.S. of equation (5) 

can be modified as 
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The integrals on R.H.S. of equation (5) can be written as 
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Beside the panel (i.e element) on the fixed point „i‟ lying, the 

integrals in equations (7) and (8) are calculated numerically 

as before. These integrals are calculated analytically for this 

element. Since r and  ̂ are orthogonal to each other over the 

element therefore the integrals    
  and    

  are zero. The 

integrals    
  and    

  have already been calculated 

(Mushtaq[12]). 

The computed velocity distribution is compared with exact 

solutions for the symmetric aerofoil using FORTRAN 

programming. The following tables (1-3) and graphs (1-4) 

show the comparison of the computed velocity with exact 

velocity over the surface of a symmetric aerofoil for 8, 16, 

32, and 64 elements using linear variation

.  
Table (1) 

ELEMENT X1M Y1M R COMP.VELOCITY EXACT VELOCITY 

1 -2.12 0.42 2.16 0.75262E+00 0.85506E+00 

2 -1.52 1.02 1.83 0.18204E+01 0.20233E+01 

3 -0.67 1.01 1.22 0.18326E+01 0.20071E+01 

4 -0.01 0.42 0.42 0.83342E+00 0.69334E+00 

5 -0.01 -0.42 0.42 0.83342E+00 0.69334E+00 

6 -0.67 -1.01 1.22 0.18326E+01 0.20071E+01 

7 -1.52 -1.02 1.83 0.18204E+01 0.20233E+01 

8 -2.12 -0.42 2.16 0.75262E+00 0.85506E+00 

Table (2) 

ELEMENT X1M Y1M R COMP.VELOCITY EXACT 

VELOCITY 

1 -2.25 0.23 2.26 0.40282E+00 0.40389E+00 

2 -2.07 0.65 2.17 0.11473E+01 0.11428E+01 

3 -1.75 0.98 2 0.17179E+01 0.17086E+01 

4 -1.32 1.15 1.75 0.20281E+01 0.20124E+01 

5 -0.87 1.15 1.44 0.20317E+01 0.20049E+01 

6 -0.44 0.97 1.06 0.17298E+01 0.1682E+01 

7 -0.11 0.63 0.64 0.1172E+01 0.10768E+01 

8 0.12 0.22 0.25 0.4856E+00 0.30788E+00 
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9 0.12 -0.22 0.25 0.4856E+00 0.30788E+00 

10 -0.11 -0.63 0.64 0.1172E+01 0.10768E+01 

11 -0.44 -0.97 1.06 0.17298E+01 0.1682E+01 

12 -0.87 -1.15 1.44 0.20317E+01 0.20049E+01 

13 -1.32 -1.15 1.75 0.20281E+01 0.20124E+01 

14 -1.75 -0.98 2 0.17179E+01 0.17086E+01 

15 -2.07 -0.65 2.17 0.11473E+01 0.11428E+01 

16 -2.25 -0.23 2.26 0.40282E+00 0.40389E+00 

Table (3) 

ELEMENT X1M Y1M R COMP.VELOCITY EXACT VELOCITY 

1 -2.28 0.12 2.29 0.20491E+00 0.19934E+00 

2 -2.24 0.35 2.26 0.60688E+00 0.58825E+00 

3 -2.15 0.56 2.22 0.98558E+00 0.95492E+00 

4 -2.02 0.76 2.16 0.13265E+01 0.12848E+01 

5 -1.85 0.92 2.07 0.16166E+01 0.15651E+01 

6 -1.66 1.05 1.96 0.18448E+01 0.17848E+01 

7 -1.44 1.14 1.84 0.20024E+01 0.19352E+01 

8 -1.21 1.18 1.69 0.20833E+01 0.20102E+01 

9 -0.98 1.18 1.53 0.20847E+01 0.20066E+01 

10 -0.75 1.14 1.36 0.20065E+01 0.19238E+01 

11 -0.53 1.04 1.17 0.18521E+01 0.17641E+01 

12 -0.34 0.91 0.97 0.16279E+01 0.15324E+01 

13 -0.17 0.74 0.76 0.13432E+01 0.12349E+01 

14 -0.04 0.54 0.54 0.10112E+01 0.87753E+00 

15 0.06 0.31 0.32 0.66308E+00 0.46369E+00 

16 0.16 0.09 0.19 0.25341E+00 0.19671E+00 

17 0.16 -0.09 0.19 0.25341E+00 0.19671E+00 

18 0.06 -0.31 0.32 0.66308E+00 0.46369E+00 

19 -0.04 -0.54 0.54 0.10112E+01 0.87753E+00 

20 -0.17 -0.74 0.76 0.13432E+01 0.12349E+01 

21 -0.34 -0.91 0.97 0.16279E+01 0.15324E+01 

22 -0.53 -1.04 1.17 0.18521E+01 0.17641E+01 

23 -0.75 -1.14 1.36 0.20065E+01 0.19238E+01 

24 -0.98 -1.18 1.53 0.20847E+01 0.20066E+01 

25 -1.21 -1.18 1.69 0.20833E+01 0.20102E+01 

26 -1.44 -1.14 1.84 0.20024E+01 0.19352E+01 

27 -1.66 -1.05 1.96 0.18448E+01 0.17848E+01 

28 -1.85 -0.92 2.07 0.16166E+01 0.15651E+01 

29 -2.02 -0.76 2.16 0.13265E+01 0.12848E+01 

30 -2.15 -0.56 2.22 0.98558E+00 0.95492E+00 

31 -2.24 -0.35 2.26 0.60688E+00 0.58825E+00 

32 -2.28 -0.12 2.29 0.20491E+00 0.19934E+00 
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CONCLUSION 
A direct boundary integral equation method has been used for 

the computation of velocity distribution of an ideal flow 

along two-dimensional body. The computed flow velocity 

obtained by applying this method is  

Compared with exact solutions for flows around the surface 

of symmetric aerofoil. It is establish that from tables (1-3) 

and graphs (1-4), the results obtained from the DBIEM for 

the flow field calculated are in very good agreement with the 

exact results for the body under consideration. 
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